A Novel Approach of Impulsive Signal Extraction for Early Fault Detection of Rolling Element Bearing

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rolling element bearing fault detection in industrial environments based on a K-means clustering approach

A K-means clustering approach is proposed for the automated diagnosis of defective rolling element bearings. Since K-means clustering is an unsupervised learning procedure, the method can be directly implemented to measured vibration data. Thus, the need for training the method with data measured on the specific machine under defective bearing conditions is eliminated. This fact consists the ma...

متن کامل

Wavelet Analysis And Envelope Detection For Rolling Element Bearing Fault Diagnosis A Comparative Study

Envelope Detection (ED) is traditionally always used with Fast Fourier Transform (FFT) to identify the rolling element bearing faults. The inability of FFT to detect non-stationary signals makes Wavelet Analysis (WA) an alternative for machinery fault diagnosis as WA can detect both stationary and non-stationery signals. A comparative study of ED with FFT and WA techniques for bearing fault dia...

متن کامل

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

Feature Extraction Method of Rolling Bearing Fault Signal Based on EEMD and Cloud Model Characteristic Entropy

The randomness and fuzziness that exist in rolling bearings when faults occur result in uncertainty in acquisition signals and reduce the accuracy of signal feature extraction. To solve this problem, this study proposes a new method in which cloud model characteristic entropy (CMCE) is set as the signal characteristic eigenvalue. This approach can overcome the disadvantages of traditional entro...

متن کامل

Rolling Element Bearing Fault Diagnostics using the Blind Deconvolution Technique

................................................................................................. i ... TABLE OF CONTENTS ................................................................................. 111 LIST OF TABLES ........................................................................................ vi . . LIST OF FIGURES .................................................................

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Shock and Vibration

سال: 2017

ISSN: 1070-9622,1875-9203

DOI: 10.1155/2017/9375491